bond.

- Riche, C. (1992). ACTACIF. Logiciel de Préparation des Fichiers CIF. Institut de Chimie des Substances Naturelles du CNRS, France.
- Sheldrick, G. M. (1976). SHELX76. Programme pour la Détermination des Structures Cristallines. Univ. de Cambridge, Angleterre.
- Sheldrick, G. M. (1985). SHELXS86. Programme pour la Solution des Structures Cristallines. Univ. de Göttingen, Allemagne.

values are 1.458 (3) and 1.340 (3) Å, respectively, and for 83 *o*-phenanthroline fragments, the mean values are 1.436 (3) and 1.335 (2) Å. Therefore, we performed an X-ray diffraction study on 10-hydroxybenzo[h]quinoline (I) as part of our studies into 2-phenylpyridine deriva-

OH N

(I)

tives, which are model compounds for the surprisingly easy deoxygenation of orellanine (Antkowiak &

Gessner, 1984; Kubicki, Borowiak, Antkowiak & Antkowiak, 1990). The title compound contains crucial structural features of orelline (double-deoxidated orel-

lanine): it is planar and has a hydroxy group and an N

atom in ortho positions with respect to the central C-C

Acta Cryst. (1995). C51, 1173-1175

10-Hydroxybenzo[h]quinoline

MACIEJ KUBICKI AND TERESA BOROWIAK

Laboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

WIESŁAW Z. ANTKOWIAK

Laboratory of Organic Spectrochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 27 July 1994; accepted 28 November 1994)

Abstract

The crystal structure of 10-hydroxybenzo[h]quinoline, C₁₃H₉NO, has been determined. The asymmetric part of the unit cell comprises two almost planar molecules. A strong intramolecular O—H···N hydrogen bond closes the six-membered ring. The geometrical features of the molecule suggest that it can be regarded as a 2-phenylpyridine with a fused double bond. In the crystal structure there are alternate layers of the two symmetry-independent molecules.

Comment

The results of the studies on *o*-phenanthroline (Nishigaki, Yoshioka & Nakatsu, 1978) show that from the point of view of geometrical features and MO calculations, it could be regarded as 2,2'-bipyridyl containing a fused C—C double bond. Examination of the Cambridge Structural Database (CSD) (Allen, Kennard & Taylor, 1983) encouraged us to extend this conclusion to a wider class of compounds, *e.g.* phenanthrene and benzo[*h*]quinoline derivatives, which therefore, can be treated as biphenyl and 2-phenylpyridine derivatives, respectively. For example, there is a significant difference between two crucial bond lengths: the 'central' and the 'peripheral' (analogues of C10a—C10b and C5—C6 in Fig. 1). For 45 phenanthrene fragments in the CSD, the mean

Fig. 1. The displacement-ellipsoid representation of molecule A with the labelling scheme. The ellipsoids are drawn at the 50% probability level, the H atoms are drawn as spheres of arbitrary radii.

There are two symmetry-independent molecules in the asymmetric part of the unit cell. The geometries of both are similar; however, inspection of a normal probability plot suggests that the differences may be statistically significant. Both molecules are almost planar, with a maximum deviation from the least-squares plane of 0.045 (4) Å for molecule A and 0.015 (4) Å for molecule B. The dihedral angles between the terminal ring planes are 2.3 (2) and 1.0 (3)° for A and B, respectively. Similar values of this angle were observed in 7,8-benzoquinoline in complex with TCNQ [2.5 (2)°; Shaanan & Shmueli, 1980], in o-phenanthroline $[2.9(3) \text{ and } 3.4(2)^{\circ}$ for the two symmetry-independent molecules; Nishigaki, Yoshioka & Nakatsu, 1978] and in phenanthrene [2.4°; Kay, Okaya & Cox, 1971]. A strong intramolecular O-H···N hydrogen bond closes the almost planar sixmembered rings [maximum deviations of 0.10(3) and 0.02(1)Å, for molecules A and B, respectively]. The H10 atoms are almost an equal distance from both N and O atoms, and the O-H···N angle becomes smaller in order to close the intramolecular ring.

Bond-length and angle patterns are typical, the long C10a-C10b bond and short C5-C6 bond support the validity of our assumption (see above). The hydroxyl substituent changes the bond-angle pattern in agreement with the results of Domenicano & Murray-Rust (1979). In the crystal structure, there are separate layers of molecules A and B, connected by 2_1 axes. A similar motif was observed for two independent molecules of ophenanthroline (Nishigaki, Yoshioka & Nakatsu, 1978). The dihedral angle between the planes of both molecules is $73.65(5)^{\circ}$, while in *o*-phenanthroline this angle is ca 88°.

Cu $K\alpha$ radiation

Cell parameters from 15

 $\lambda = 1.54178 \text{ Å}$

reflections

 $\theta = 19.35 - 37.54^{\circ}$

 $\mu = 0.695 \text{ mm}^{-1}$

T = 293 (2) K

Prism

Experimental

Crystal data

C₁₃H₉NO $M_r = 195.21$ Orthorhombic Pbc21 a = 4.6530(4) Å b = 15.1910(10) Å c = 26.902(2) Å V = 1901.5 (2) Å³ Z = 8 $D_{\rm r} = 1.364 {\rm Mg m}^{-3}$

Data collection

Syntex P21 diffractometer $\omega/2\theta$ scans Absorption correction: none 1312 measured reflections 1312 independent reflections 1076 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0383$ wR(F²) = 0.0767 S = 1.2601306 reflections 280 parameters H-atom parameters not refined except H10A and H10B, which were refined isotropically $w = 1/[\sigma^2(F_o^2) + (0.0150P)^2]$ + 0.9500P] where $P = (F_o^2 + 2F_c^2)/3$

Table	1. Fractional	atomic o	coordinates	and	equivalent
	isotropic dis	splaceme	nt paramete	rs (Å	²)

$U_{eq} = (1/3) \sum_i \sum_i U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

	-		.,	
	x	у	Z	U_{eq}
N1A	1.0034 (9)	1.0843 (2)	0.19974 (14)	0.0568 (10)
C2A	1.1949 (11)	1.0912 (3)	0.2364 (2)	0.0637 (13)
C3A	1.2955 (11)	1.0195 (4)	0.2626 (2)	0.0684 (14)
C4A	1.1979 (10)	0.9372 (3)	0.2512 (2)	0.0624 (13)
C4aA	0.9963 (10)	0.9272 (3)	0.2129 (2)	0.0516 (11)
C5A	0.8866 (11)	0.8426 (3)	0.1987 (2)	0.0636 (13)
C6A	0.6899 (11)	0.8364 (3)	0.1622 (2)	0.0656 (14)
C6aA	0.5831 (10)	0.9113 (3)	0.1357 (2)	0.0558 (12)
C7A	0.3734 (11)	0.9023 (4)	0.0990 (2)	0.0671 (14)
C8A	0.2742 (12)	0.9748 (4)	0.0746 (2)	0.0745 (15)
C9A	0.3794 (11)	1.0571 (4)	0.0849 (2)	0.0690 (15)
C10A	0.5907 (10)	1.0688 (3)	0.1210 (2)	0.0571 (12)
O10A	0.6961 (8)	1.1515 (2)	0.12983 (14)	0.0762 (10)
C10aA	0.6929 (9)	0.9956 (3)	0.1483 (2)	0.0486 (11)
C10bA	0.9016 (9)	1.0025 (3)	0.1878 (2)	0.0480 (11)
N1 <i>B</i>	0.0295 (9)	0.3704 (2)	0.39230 (15)	0.0621 (10)
C2B	-0.1629 (11)	0.4246 (3)	0.4131 (2)	0.0723 (15)
C3B	-0.2514 (12)	0.4181 (4)	0.4617 (2)	0.077 (2)
C4B	-0.1385 (11)	0.3533 (3)	0.4909 (2)	0.0669 (13)
C4aB	0.0618 (10)	0.2947 (3)	0.4714 (2)	0.0541 (12)
C5B	0.1861 (11)	0.2256 (3)	0.4993 (2)	0.0634 (13)
C6B	0.3795 (12)	0.1703 (3)	0.4792 (2)	0.0634 (13)
C6aB	0.4708 (10)	0.1782 (3)	0.4284 (2)	0.0533 (12)
C7B	0.6763 (11)	0.1209 (3)	0.4080 (2)	0.0643 (13)
C8B	0.7608 (11)	0.1317 (3)	0.3596 (2)	0.0715 (15)
C9B	0.6460 (11)	0.1974 (3)	0.3305 (2)	0.0658 (13)
C10B	0.4467 (10)	0.2542 (3)	0.3490 (2)	0.0576 (12)
O10B	0.3330 (8)	0.3175 (3)	0.31866 (13)	0.0848 (11)
C10aB	0.3530 (9)	0.2464 (3)	0.3991 (2)	0.0491 (10)
C10bB	0.1455 (10)	0.3050 (3)	0.4211 (2)	0.0494 (11)

Table 2. Selected geometric parameters (Å. °)

$0.35 \times 0.20 \times 0.15 \text{ mm}$	Table 2. Sele	cted geon	netric parameters (Å	., °)
Colorless	N1A-C2A	1.332 (6)	N1B-C2B	1.339 (6)
Crystal source: crystallized	N1A-C10bA	1.368 (5)	N1B-C10bB	1.371 (5)
from a CH ₂ Cl ₂ -benzene	C2A-C3A	1.380 (6)	C2B—C3B	1.373 (8
	C3A—C4A	1.365 (6)	C3B—C4B	1.365 (7)
system	C4A—C4aA	1.403 (6)	C4B—C4aB	1.391 (6
	C4aA—C10bA	1.400 (5)	C4aB—C5B	1.415 (6)
	C4aA—C5A	1.435 (6)	C4aB—C10bB	1.417 (6)
	C5A—C6A	1.347 (7)	C5B—C6B	1.344 (7)
$\theta_{\rm max} = 57.34^{\circ}$	C6A—C6aA	1.431 (6)	C6B—C6aB	1.436 (6)
$h = 0 \rightarrow 5$	C6aA—C7A	1.394 (6)	C6aB—C7B	1.405 (6)
$n = 0 \rightarrow 3$	C6aA—C10aA	1.421 (6)	C6aB—C10aB	1.412 (6)
$k = 0 \rightarrow 16$	C7A—C8A	1.363 (7)	C7 <i>B</i> —C8 <i>B</i>	1.368 (7)
$l = 0 \rightarrow 29$	C8AC9A	1.372 (7)	C8 <i>B</i> —C9 <i>B</i>	1.377 (7
2 standard reflections	C9A-C10A	1.394 (7)	C9B—C10B	1.362 (6
monitored every 100	C10A-010A	1.368 (5)	C10B-010B	1.367 (5
raflections	C10A—C10aA	1.415 (6)	CIOB-CIOBB	1.422 (5
Tenecuons	CloaA—ClobA	1.442 (6)	C10aB-C106B	1.440 (0
intensity decay: 1.5%	C2A-N1A-C10bA	118.5 (4)	C2B-N1B-C10bB	118.2 (4
	N1A-C2A-C3A	123.0 (5)	N1B—C2B—C3B	123.7 (5)
	C4A—C3A—C2A	119.7 (5)	C4B—C3B—C2B	118.9 (5
	C3A—C4A—C4aA	119.1 (5)	C3B—C4B—C4aB	120.2 (5
$(\Delta/\sigma)_{\rm max} < 0.001$	C10bA—C4aA—C4A	118.5 (4)	C4B—C4aB—C5B	123.2 (5
$\Delta \rho_{\rm max} = 0.117 \ {\rm e} \ {\rm A}^{-3}$	C10bA—C4aA—C5A	119.5 (4)	C4B—C4aB—C10bB	118.3 (5)
$\Delta \rho_{\rm min} = -0.131 \ {\rm e} \ {\rm \AA}^{-3}$	C4A—C4aA—C5A	122.0 (4)	C5B-C4aB-C106B	118.5 (4)
Extinction correction:	C6A-C5A-C4aA	119.9 (5)	C6BC5BC4aB	121.0 (4
CHELVIO2 (Shaldwick	CSA-C6A-C6aA	123.0 (4)		121.9 (5
SHELAL95 (Sheidrick,	C7A—C6aA—C10aA	120.6 (4)	C/B— $C6aB$ — $C10aB$	120.0 (4
1993)	C/A-C6aA-C6A	121.2 (5)	C/B— $CoaB$ — CoB	121.4 (4
Extinction coefficient:	CIUAA-COAA-COA	118.2 (4)		110.0 (4
0.0048 (4)		120.0 (5)		121 1 /5
Atomic scattering factors	$C/A \rightarrow C \delta A \rightarrow C \delta A$	121.2 (5)	$C_{D} = C_{0} = C_{0$	121.1 (5
from Internetional Tables	$C_{0A} - C_{0A} - C_{0A}$	120.0(3)	C_{10} C	110 / //
from International Tables	0104 - 0104 - 0104	119.4 (4)	C9B - C10B - C10B	120.2 (5
for Crystallography (1992,	C04 $C104$ $C10a$	110 0 (5)	0108 - 0108 - 0108	120.2 (3
Vol. C, Tables 4.2.6.8 and	$C_{10A} - C_{10a} - C_{0aA}$	117.7(4)	C6aB - C10aB - C10B	118.2 (4
6.1.1.4)	C10A-C10aA-C10bA	123.4 (4)	C6aB-C10aB-C10bB	119.0 (4

C6aA-C10aA-C10bA	118.9 (4)	C10B-C10aB-C10bB	122.9 (4)
N1A—C10bA—C4aA	121.3 (4)	N1B—C10bB—C4aB	120.7 (4)
N1A-C10bA-C10aA	118.2 (4)	N1B-C10bB-C10aB	118.7 (4)
C4aA—C10bA—C10aA	120.5 (4)	C4aB—C10bB—C10aB	. 120.5 (4)

Table 3. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O10A—H10A · · · N1A	1.36 (6)	1.45 (5)	2.573 (5)	132 (4)
O10 <i>B</i> —H10 <i>B</i> ···N1 <i>B</i>	1.34 (4)	1.41 (4)	2.562 (5)	138 (3)

The background and integrated intensity for each reflection were obtained by the profile-analysis method of Lehmann & Larsen (1974).

Data collection: P2₁ diffractometer software. Cell refinement: P2₁ diffractometer software. Data reduction: PRADIR (Jaskólski, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989). Software used to prepare material for publication: SHELXL93.

This study was supported jointly by Projects No. 2 0759 91 01 KBN and S/II.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1144). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Antkowiak, W. Z. & Gessner, W. P. (1984). Tetrahedron Lett. 25, 4045–4048.
- Domenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. 24, 2283–2287.
- Jaskólski, M. (1990). PRADIR. Program for Data Reduction. Adam Mickiewicz Univ., Poznań, Poland.

Kay, M. I., Okaya, Y. & Cox, D. E. (1971). Acta Cryst. B27, 26-33.

- Kubicki, M., Borowiak, T., Antkowiak, R. & Antkowiak, W. Z. (1990). J. Crystallogr. Spectrosc. Res. 20, 381–387.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
- Nishigaki, S., Yoshioka, H. & Nakatsu, K. (1978). Acta Cryst. B34, 875-879.

Shaanan, B. & Shmueli, U. (1980). Acta Cryst. B36, 2076-2082.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 1175-1177

The Effect of Substituents on the Crystal Structure of β -Amino Alcohols. 2-[(3,4-Dimethoxybenzyl)(methyl)amino]-2-phenylethanol

MIREN KARMELE URTIAGA AND MARÍA ISABEL ARRIORTUA

Departamento de Mineralogía-Petrología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

DOLORES BADÍA, ESTHER DOMÍNGUEZ AND ANA MARÍA GONZÁLEZ-CAMENO

Departamento de Química Orgánica, Universidad de País Vasco, Apartado 644, 48080 Bilbao, Spain

LUIS OCHANDO AND MERCEDES REVENTOS

Departamento de Geología, Universidad de Valencia, Avda Dr Moliner 50, 46110 Burjassot, Valencia, Spain

TONY DEBAERDEMAEKER

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, 89081-Ulm, Germany

(Received 7 April 1994; accepted 28 November 1994)

Abstract

The crystal structure of 2-[(3,4-dimethoxybenzyl)-(methyl)amino]-2-phenylethanol, $C_{18}H_{23}NO_3$, (I), has been determined. The influence of the type and size of the groups bonded to the N atom in the crystal structure of (I) was studied and compared with the influence of such groups on the crystal structure of 2-[(3,4-dimethoxybenzyl)(*p*-toluenesulfonyl)amino]-2-phenylethanol, (II). The N atom of compound (I) shows sp^3 character and is synclinal to the OH group, while the N atom of compound (II) shows sp^2 character and is antiperiplanar to the OH group.

Comment

 β -Amino alcohols constitute an interesting class of substances with pharmaceutical and other biological activities (Reetz, 1991). They can also be used as intermediates in the synthesis of nitrogen heterocycles with potential pharmacological activity, such as 3-arylisoquinoline derivatives (Venkov & Vodenicharov, 1990). These facts have prompted us to begin crystallographic studies of β -amino alcohols (Arriortua *et al.*, 1995). We have also found it interesting to determine the effects of the substituents on these crystal structures. In this context, we decided to study the arrangement of